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Abstract

A uni®ed numerical method is developed in this article for the analysis of deformations and stresses in elastic±plastic

rotating disks with arbitrary cross-sections of continuously variable thickness and arbitrarily variable density made of

nonlinear strain-hardening materials. The method is based on a polynomial stress±plastic strain relation, deformation

theory in plasticity and Von MisesÕ yield condition. The governing equation is derived from the basic equations of the

rotating disks and solved using the Runge±Kutta algorithm. The proposed method is applied to calculate the defor-

mations and stresses in various rotating disks. These disks include solid disks with constant thickness and constant

density, annular disks with constant thickness and constant density, nonlinearly variable thickness and nonlinearly

variable density, linearly tapered thickness and linearly variable density, and a combined section of continuously

variable thickness and constant density. The computed results are compared to those obtained from the ®nite element

method and the existing approaches. A very good agreement is found between this research and the ®nite element

analysis. Due to the simplicity, e�ectiveness and e�ciency of the proposed method, it is especially suitable for the

analysis of various rotating disks. Ó 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Rotating disks have a wide range of applications in engineering, such as high speed gears, ¯y wheels and
turbine rotors. The research on them is always an important topic and their bene®ts have been included in
some books (Timoshenko and Goodier, 1970; Ugural and Fenster, 1987).

Most of the research work are concentrated on the analytical solutions of rotating disks with simple
cross-section geometries of constant thickness and speci®cally variable thickness. The material density of
these rotating disks is taken to be either constant or speci®cally variable. The analytical elasticity solutions
of such rotating disks can be found in many books of elasticity. The analytical solution of elastic±perfectly
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plastic rotating disks of constant thickness and density was studied by Gamer (1983) using TrescaÕs yield
condition. Gamer (1984a, b) also studied the analytical solutions of such disks with a linear strain-hard-
ening material behaviour using same yield condition. G�uven (1992) extended this work to rotating disks of
thickness function h � h0�r=b�ÿn

and density function q � q0�r=b�m, and obtained their analytical solution
using the same material behaviour and yield condition. As the application of the linear strain-hardening
stress±plastic strain relation and TrescaÕs yield condition can lead to a closed-form solution, they were also
applied to study the behaviours of ®brous composites under thermal and thermomechanical loading (You
and Long, 1998; You et al., 1999). However, many materials exhibit a nonlinear strain-hardening behav-
iour. This cannot be described well enough using the linear strain-hardening stress±plastic strain relation.
Even for small deformation, as very obvious, nonlinearity occurs in the plastic region close to the yield
point of stress±strain curves, it is also valuable to use nonlinear strain-hardening stress±strain or stress±
plastic strain relations to approach this nonlinearity. To do this, a polynomial stress±plastic strain relation
and a polynomial stress±strain relation have been proposed for the disks of nonlinear strain-hardening
materials and were applied to solve the nonlinear strain-hardening elastic±plastic problem of rotating solid
disks with a constant thickness and constant density (You et al., 1997; You and Zhang, 1999).

As many rotating components in use have complex cross-sectional geometries, they cannot be dealt
with using the existing analytical methods. Numerical methods, such as the ®nite element method
(Zienkiewicz, 1971) and the boundary element method (Banerjee and Butter®eld, 1981), can be applied
to cope with these rotating components. However, as Sterner et al. (1993) pointed out, these numerical
analyses usually require extensive computer resources, are tedious to perform due to extensive meshing
requirements and are expensive, making them unsuitable for preliminary design type analysis. There-
fore, Sterner et al. (1993) developed a uni®ed numerical method for the elastic analysis of rotating disks
with a general, arbitrary con®guration based on the repeated application of a truncated TaylorÕs
expansion.

In this article, we will extend the work of Sterner et al. (1993) from elastic analysis to nonlinear strain-
hardening elastic±plastic analysis for the rotating disks with arbitrary cross-sections of continuously
variable thickness and arbitrarily variable density. In the following, a uni®ed governing equation will be
®rst derived from the basic equations of the rotating disks, deformation theory in plasticity and the pro-
posed stress±strain relationship. Next, Runge±KuttaÕs algorithm will be introduced to solve the governing
equation. Finally, a number of numerical examples are given to demonstrate the validity of the proposed
method.

2. Governing equation

As the e�ect of the thickness variation of rotating disks can be taken into account in their equation of
motion, the theory of the disks of variable thickness can give good results as that of the disks of constant
thickness as long as they meet the assumption of plane stress. After considering this e�ect, the equation of
motion of rotating disks with variable thickness and variable density can be written as

d

dr
�hrrr� ÿ hrh � hqx2r2 � 0; �1�

where r is the radial coordinate, rr and rh are the radial and circumferential stresses, x, the constant an-
gular velocity, h, the thickness and q, the density of the rotating disks which are functions of the radial
coordinate r.

The relations between the radial displacement u and the strains are irrespective of the thickness and
density of the rotating disks. They can be written as
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er � du
dr
;

eh � u
r
;

�2�

where er is the total radial strain and eh the total circumferential strain.
The above geometric relations lead to the following condition of deformation harmony:

d

dr
�reh� ÿ er � 0: �3�

The deformation of the rotating disks consists of elastic and plastic components. For the elastic de-
formation, the relations between the stresses and strains can be described with HookeÕs law

ee
r �

1

E
�rr ÿ mrh�;

ee
h �

1

E
�rh ÿ mrr�;

�4�

where ee
r and ee

h are the elastic radial and circumferential strains, E is YoungÕs modulus and m is PoissonÕs
ratio.

For the plastic deformation, the relations between the stresses and plastic strains can be determined
according to the deformation theory in plasticity

ep
r �

ep
e

re

rr

�
ÿ 1

2
rh

�
;

ep
h �

ep
e

re

rh

�
ÿ 1

2
rr

�
;

�5�

where ep
r and ep

h are the plastic radial and circumferential strains, ep
e is the equivalent plastic strain and re is

the equivalent stress

re �
������������������������������
r2

r ÿ rrrh � r2
h

q
:

The total strains are the sum of the elastic and plastic strains

er � ee
r � ep

r ;

eh � ee
h � ep

h :
�6�

Introducing the stress function / and assuming that the following relations hold between the stresses and
the stress function

rr � 1

hr
/;

rh � 1

h
d/
dr
� qx2r2;

�7�

Eq. (1) is satis®ed after the substitution of Eq. (7).
Substituting Eq. (7) into Eq. (4), and then substituting Eq. (4) into Eq. (6), one obtains:

er � 1

E
1

hr
/

�
ÿ m

h
/0 ÿ mqx2r2

�
� ep

r ;

eh � 1

E
1

h
/0

�
ÿ m

hr
/� qx2r2

�
� ep

h ;

�8�
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where

/0 � d/
dr
:

The substitution of Eq. (8) into Eq. (3) produces

r2/00 � ÿ 1

�
ÿ r

h0

h

�
r/0 � 1

�
ÿ mr

h0

h

�
/ÿ �3� m�hqx2r3 ÿ hq0x2r4 ÿ Ehr r

dep
h

dr

�
� ep

h ÿ ep
r

�
; �9�

where

/00 � d2/
dr2

; h0 � dh
dr
; q0 � dq

dr
:

Adopting the nonlinear strain-hardening material model proposed by You et al. (1997), the stress±strain
relationship can be written as:

ee � re

E
; ee6 e0;

ep
e � a1r

3
e � a2r

5
e ; ee > e0;

�10�

where ee is the equivalent total strain and e0, the yield strain.
Substituting the second of Eq. (10) into Eq. (5), the relations between the plastic strains and stresses

become:

ep
r � �a1r

2
e � a2r

4
e� rr

�
ÿ 1

2
rh

�
;

ep
h � �a1r

2
e � a2r

4
e� rh

�
ÿ 1

2
rr

�
:

�11�

The governing equation in the plastic region of the rotating disks in terms of stresses and stress function
can be obtained as follows by substituting Eq. (11) into Eq. (9)

1

�
� E

1

2
�a1

�
� 2a2r

2
e��2rh ÿ rr�2 � �a1r

2
e � a2r

2
e�
��

r2/00

� ÿ 1

�
ÿ r

h0

h

�
r/0 � 1

�
ÿ mr

h0

h

�
/ÿ �3� m�hqx2r3 ÿ hq0x2r4

ÿ E
1

2
�a1

�
� 2a2r

2
e��2rh ÿ rr� �2rr

�
ÿ rh� r/0

�
ÿ 1

�
� r

h0

h

�
/

�
� �2rh ÿ rr�

�
ÿ r2 h0

h
/0 � 2hqx2r3 � hq0x2r4

��
� a1r

2
e

ÿ � a2r
4
e

�
�
�
ÿ 1

2

�
� r

h0

h

�
� 1

2

�
� r

h0

h

�
/� 2hqx2r3 � hq0x2r4 � 3

2
rh�rh ÿ rr�

��
: �12a�

In the elastic region, no plastic deformation exists. Therefore, a1 and a2 are zero and Eq. (12a) becomes

r2/00 � ÿ 1

�
ÿ r

h0

h

�
r/0 � 1

�
ÿ mr

h0

h

�
/ÿ �3� m�hqx2r3 ÿ hq0x2r4: �12b�

The values of the stress function / at the elastic±plastic interface radius given by Eqs. (12a) and (12b) are
the same. Therefore, the stress function / is continuous at the interface radius. It can be seen from the
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continuity of the stress function and Eqs. (7), (4)±(6) and (2) that the continuity conditions of the stresses
and displacement at the elastic±plastic interface radius are satis®ed.

The boundary conditions for the rotating solid disks are

rr � rh at r � 0;

rr � 0 at r � b;
�13�

and those for the rotating annular disks are

rr � 0 at r � a;

rr � 0 at r � b;
�14�

where a and b are the inner and outer radii of the rotating disks, respectively.

3. Runge±Kutta's algorithm

As shown by Eqs. (12)±(14), the resolution of the elastic±plastic problems of rotating disks with a
nonlinear strain-hardening material behaviour is to solve a second-order di�erential Eq. (12a) under the
given boundary conditions (13) or (14). Eq. (12a) can be written in the following general form:

/00 � f �r;/;/0�: �15�
For such a two-point boundary value problem given by Eqs. (15) and (13) or (14), some numerical

methods have been developed (see e.g., James et al., 1985). Here we introduce Runge±KuttaÕs algorithm to
solve Eq. (15) subject to the boundary conditions (13) or (14).

Runge±KuttaÕs iterative formulae for the second-order di�erential equation are (James et al., 1985)

/0i�1 � /0i �
Dr
6
�K1 � 2K2 � 2K3 � K4�;

/i�1 � /i � Dr /0i

�
� Dr

6
�K1 � K2 � K3�

�
;

�16�

where Dr is the increment of the distance along the radius of the rotating disks, and K1, K2, K3 and K4 can be
determined with the following formulae

K1 � f �ri;/i;/
0
i�;

K2 � f ri

�
� Dr

2
;/i �

Dr
2

/0i;/
0
i �

Dr
2

K1

�
;

K3 � f ri

�
� Dr

2
;/i �

Dr
2

/0i �
1

4
Dr2K1;/

0
i �

Dr
2

K2

�
;

K4 � f ri

�
� Dr;/i � Dr/0i �

1

2
Dr2K2;/

0
i � DrK3

�
:

�17�

Once the stress function is obtained, the stresses and displacement in the rotating disks can be calculated
using Eqs. (7) and (2).

The numerical simulation starts from the inner boundary, where a trial value of the ®rst-order derivative
of the stress function is assumed. Here the stress function at this boundary can be determined by the
boundary conditions. Then with a small distance increment Dr, the stress function and its ®rst-order de-
rivative at the new position can be obtained using Eq. (16), and the radial and circumferential stresses are
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calculated with Eq. (7). If the equivalent stress at this new position is greater than the yield stress of the
disk, Eq. (12a) is used to obtain the second-order derivative of the stress function in the plastic region;
otherwise, Eq. (12b) is applied to determine the derivative in the elastic region. The same treatment is
repeated from the inner boundary to the outer boundary where the value of the stress function is known.
According to the di�erence between the computed radial stress and the known radial stress at the outer
boundary, the initial trial value of the ®rst-order derivative of the stress function at the inner boundary is
modi®ed and the next iteration is carried out in the same way. This iterative process is performed until both
the boundary conditions are simultaneously satis®ed.

4. Numerical simulation

A number of numerical examples of the rotating disks with a nonlinear strain-hardening material be-
haviour will be given to examine the validity of the proposed method. These examples include: rotating
solid disks of constant thickness and constant density, rotating annular disks of constant thickness and
constant density, nonlinearly variable thickness h � h0�r=b�ÿn

and nonlinearly variable density q �
q0�r=b�m, linearly tapered thickness and linearly variable density, and a combined section with continuously
variable thickness and constant density.

The material properties of all the rotating disks to be studied are taken to be: material density q � 7850
kg/m3 (for the variable density, this value is the density of the disks at their outer radius), YoungÕs modulus
E � 207 GPa, PoissonÕs ratio m � 0:3 and yield stress r0 � 232:96605 MPa. The stress±plastic strain relation
of the nonlinear strain-hardening rotating disks is taken as

ep
e � ÿ9:8652� 10ÿ11r3

e � 1:8177� 10ÿ15r5
e : �18�

In order to make a comparison between the proposed approach and the existing researches, the linear
strain-hardening stress±plastic strain relation in the existing research studies is used to approximate Eq. (18)
which leads to the following form

re � 232:96605�1� 144:3548ep
e�: �19�

The stress±plastic strain curves from Eqs. (18) and (19) are plotted in Fig. 1 where PSH stands for the
nonlinear strain-hardening stress±plastic strain relation, and LSH represents the linear strain-hardening
stress±plastic strain relation. It can be seen from the ®gure that the linear strain-hardening material model
cannot describe the nonlinear material behaviour well enough.

Fig. 1. Stress±plastic strain curves.
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4.1. Rotating solid disks of constant thickness and constant density

At ®rst, a rotating solid disk of constant thickness and constant density is studied. The disk has a radius
b � 0:5 m and rotates at a constant angular velocity x � 650 rad/s. Three methods, the proposed approach,
the existing research (Gamer, 1984a) and the commercially available ®nite element package of ANSYS
revision 5.2, are used to calculate the disk. The obtained results are given in Fig. 2(a)±(e). As shown above,
PSH and LSH in these ®gures and the following ®gures, respectively, indicate this approach and the existing
research studies. FEP denotes the ®nite element analysis whose stress±plastic strain data are taken from
Eq. (18).

The proposed approach gives very agreeable results to the ®nite element calculation. However, large
errors occur between the existing research and the other methods. Compared to the ®nite element result, the
errors of the maximum values of the stresses, plastic strains and radial displacements from this research are
0.03%, 0.51% and 0.24%. However, the existing approach raises these ®gures to 13.43%, 88.08% and
21.84%. Moreover, the region where the radial plastic strain is zero, given by the existing research, does not
exist for the other methods according to Fig. 2(c). Due to this reason, the existing research gives a bigger
plastic region (Fig. 2(d)) and bigger radial displacements (Fig. 2(e)) than do the other methods.

Fig. 2. (a) Radial stresses, (b) circumferential stresses, (c) radial plastic strains, (d) circumferential plastic strains and (e) radial dis-

placements in a solid disk of 0.5 m under 650 rad/s.
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4.2. Rotating annular disks of constant thickness and constant density

Taking n � 0 in the thickness function h � h0�r=b�ÿn
and m � 0 in the density function q � q0�r=b�m of

the rotating annular disk studied by G�uven (1992), a rotating annular disk of constant thickness and
constant density will be discussed here. The inner and outer radii of the disk are, respectively taken as
a � 0:1 m and b � 0:6 m. The disk rotates at a constant angular velocity x � 190 rad/s. The calculated
stresses, plastic strains and radial displacements are plotted in Fig. 3(a)±(c).

The same conclusions can be drawn from Fig. 3(a)±(c). The proposed approach gives very small errors
compared to the ®nite element calculation. But large errors exist between the existing research and the other
methods. The errors of the maximum plastic strain, the circumferential stress and radial displacement at
r � a from this research are 1.79%, 0.18% and 0.31%. They become 47.52%, 17.14% and 35.02% for the
existing approach. According to the existing research, the radial plastic strain is always zero throughout the
entire thickness of the rotating annular disk (see Fig. 3(b)). However, it is not true from the results of
the ®nite element analysis and this research. Similarly, the introduction of zero radial plastic strain makes
the disk have a much bigger plastic region (Fig. 3(b)) and bigger radial displacements (Fig. 3(c)).

4.3. Rotating annular disks of nonlinearly variable thickness and nonlinearly variable density

Taking n � 0:5 in the variable thickness function h � h0�r=b�ÿn
and m � 1 in the variable density

function q � q0�r=b�m, a rotating annular disk with such variable thickness and variable density is studied.
The inner and outer radii of the disk are taken to be a � 0:1 m and b � 0:5 m, and the rotating angular
velocity is assumed to be x � 730 rad/s. The results calculated with the above three methods are given in
Fig. 4(a)±(c).

For this rotating annular disk, the errors of the maximum plastic strain, the circumferential stress and
radial displacement at r � a given by this approach are 1.60%, 0.67% and 0.49%. These numbers go up to
90.88%, 12.35% and 52.20% for the existing research (G�uven, 1992). It is clear that for rotating annular
disks of variable thickness and variable density, this research can also give very good results, but in the
existing approach there still exists big discrepancies.

Fig. 3. (a) Stresses, (b) plastic strains and (c) radial displacements in an annular disk with n � 0, m� 0 under 490 rad/s.
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4.4. Rotating annular disks with linearly tapered thickness and linearly variable density

A rotating annular disk with linearly tapered thickness and linearly variable density is investigated. The
inner and outer radii of the disk are still taken as a � 0:1 m and b � 0:5 m. The linearly tapered thickness
function and linearly variable density function are

h � �hb ÿ ha� � r � habÿ hba
bÿ a

; �20�

q � 1

2
q0 1
�
� r

b

�
; �21�

where ha and hb are the thickness of the disk at inner and outer radii, respectively, and q0 is the density of
the disk at the outer radius r� b.

The thickness ratio is assumed to be hb=ha � 2. The angular velocity of the disk for this case study is
x � 500 rad/s. Since the existing research cannot cope with this rotating annular disk, only the proposed
approach and ®nite element method are applied to analyse the disk. In order to indicate the e�ect of the
material plasticity on the stresses and deformations in the disk, the elastic ®nite element calculation is also
performed. The results obtained with these methods are given in Fig. 5(a) and (b) where PSH and FEP are
the same as above, and FEE means the elastic ®nite element analysis.

Once more, the results given by this research are very close to those from the elastic±plastic ®nite element
analysis. Compared to the elastic±plastic ®nite element results, the errors of the circumferential stress and
radial displacement at r � a are 0.09% and 0.21%, respectively. Without considering the plastic deforma-
tion of the disk, the circumferential stresses decrease very quickly in the region outgoing from the inner
radius and the maximum circumferential stress always occurs at the inner radius according to the elastic
®nite element results. Taking the plasticity of the disk into account, the position of maximum circumfer-
ential stress is away from the inner radius, and the di�erence between the circumferential stresses from the
elastic and elastic±plastic analyses becomes bigger and bigger as the plastic deformation increases.

Fig. 4. (a) Stresses in an annular disk with n � 0.5, m � 1 under 730 rad/s. (b) Plastic strains in an annular disk with n � 0.5, m � 1

under 730 rad/s. (c) Radial displacements in an annular disk with n � 0.5, m � 1 under 730 rad/s.
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Moreover, a more and more obvious di�erence between the elastic and elastic±plastic displacements occurs
when moving towards the inner radius.

4.5. Rotating annular disks with a combined section of continuously variable thickness and constant density

The last example is to calculate a rotating annular disk with a combined section of continuously variable
thickness and constant density. The calculation of turbine rotors can be simpli®ed as that of such rotating
annular disks with a constant angular velocity subjected to a radial stress rrexternal

at the interface between the
web and rim of the turbine rotors (Sterner et al., 1993). The cross-section geometry of the rotating annular
disk is given in Fig. 6. The boundary conditions (14) for this case study are changed as

rr � 0 at r � L0;

rr � rrexternal
at r � L0 � Lh � Lw:

�22�

The numerical simulation still starts from the inner boundary. However, as the thickness of the hub in
the region of L06 r6 L0 � Lh is constant, h0 is zero in this region. After the values of the stress function and
its ®rst- and second-order derivatives at r � L0 � Lh are obtained, h0 is changed to that of the web, and the
simulation continues from this position to the outer boundary.

Fig. 5. (a) Stresses in an annular disk with linearly tapered thickness and linearly variable density under 500 rad/s. (b) Radial dis-

placements in an annular disk with linearly tapered thickness and linearly variable density under 500 rad/s.

Fig. 6. Cross-section geometry of a rotating annular disk with a combined section.
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In this case study, the geometric data of the disk are L0 � 0:1 m, Lh � 0:1 m, Lw � 0:3 m and the ratio
H1=H2 � 2. The angular velocity of the disk is taken as x � 500 rad/s and the externally applied radial
stress is 50 MPa. Once again, the existing research cannot deal with the elastic±plastic problem of this disk.
For the same reason, this research, elastic±plastic and elastic ®nite element methods are used to calculate
this problem. The calculated results are given in Fig. 7(a) and (b).

Very good results are obtained with the proposed approach. In comparison with the elastic±plastic ®nite
element results, the error of the circumferential stress at inner radius is 0.48% and that of the radial dis-
placement at the same position is 0.51%. The e�ect of the plastic deformation of the disk on the stresses and
radial displacements is the same as that of the rotating annular disk with linearly tapered thickness and
linearly variable density.

5. Conclusion

This article presents a uni®ed numerical method for the elastic±plastic calculation of nonlinear strain-
hardening rotating disks with a general, arbitrary con®guration and arbitrarily variable density. By in-
troducing a suitable stress function, the governing equation was derived from the equilibrium equation,
compatibility equation, deformation theory in plasticity, Von MisesÕ yield condition and the proposed
stress±strain relationship of nonlinear strain-hardening. The calculation of the rotating disks was turned
into ®nding the solution of a second-order di�erential equation under the given conditions at two boundary
points. Runge±KuttaÕs algorithm was introduced to solve the governing equation and a number of nu-
merical examples were studied. The results from this research, the existing approaches and ®nite element
analysis were compared. Obvious errors occur between the existing researches and the other methods.
Contrarily, the results given by the proposed approach are in very good agreement with those of the ®nite
element method for all the rotating disks studied. Further, the proposed approach considers the nonlinear
strain-hardening behaviour of the disk materials and can cope with the rotating disks with arbitrary cross-
sections of continuously variable thickness and arbitrarily variable density, which cannot be dealt with
using the existing researches.

Fig. 7. (a) Stresses in an annular disk with a combined section under 500 rad/s and an externally applied radial stress of 50 MPa. (b)

Radial displacements in an annular disk with a combined section under 500 rad/s and an externally applied radial stress of 50 MPa.
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